Открытый урок по алгебре 8 класс по теме: «Решение квадратных уравнений по формуле»

Цели и задачи:

Образовательные: предоставить учащимся возможности познакомиться и изучить алгоритм решения полных квадратных уравнений по формуле, способствовать пониманию и первичному закреплению алгоритма в ходе решения уравнений

Воспитательные повышение коммуникативной активности учащихся, формирование умения аргументировать свою точку зрения, разумно оценивать работу своего товарища

Содержимое разработки

Муниципальное казенное общеобразовательное учреждение

«Ахтынская средняя общеобразовательная школа №1»





Открытый урок по алгебре 8 класс по теме:

«Решение квадратных уравнений по формуле»



















Подготовила и провела

учитель математики

МКОУ «Ахтынская СОШ№1»

Исейханова В.М.



Тема урока: «Решение квадратных уравнений по формуле»

Класс: 8 класс,

Форма проведения: комбинированный урок изучения и первичного закрепления новых знаний

Цели и задачи:

Образовательные: предоставить учащимся возможности познакомиться и изучить алгоритм решения полных квадратных уравнений по формуле, способствовать пониманию и первичному закреплению алгоритма в ходе решения уравнений

Воспитательные повышение коммуникативной активности учащихся, формирование умения аргументировать свою точку зрения, разумно оценивать работу своего товарища

Развивающие: развивать способности учащихся к усвоению новой информации, формировать умение сравнивать, анализировать, кратко и четко выражать свое мнение

Ход урока

  1. Организационный момент

  2. Постановка цели и задач. Мотивация учебной деятельности (Формулирование проблемы)

  3. Актуализация знаний

  4. Первичное усвоение новых знаний

  5. Физкультминутка

  6. Первичная проверка понимания

  7. Первичное закрепление

  8. Информация о домашнем задании и инструктаж о его выполнении

  9. Рефлексия. Подведение итогов урока

Технические средства обучения: компьютер, проектор, колонки (для проведения физкультминутки – гимнастики для глаз) презентация (авторская разработка)

Открытый урок по алгебре 8 класс по теме

«Решение квадратных уравнений по формуле»

План– конспект урока

  1. 2. Организационный момент. Постановка целей и задач. Мотивация учебной деятельности

Эмоциональный настрой нашей совместной работы.

- Здравствуйте, ребята! Садитесь, пожалуйста. Сегодня у нас с вами урок изучения нового материала «Решение квадратных уравнений по формуле». Цель урока познакомиться с алгоритмом решения полного квадратного уравнения. Девизом урока будут слова: хочу, могу, умею, делаю. (Приложение 1, слайд 2)

МОГУ: ребята, на уроке можно ошибаться, сомневаться, консультироваться (задавать вопросы).

УМЕЮ: мы умеем решать неполные квадратные уравнения, полные квадратные уравнения выделением квадрата двучлена.

ХОЧУ: познакомиться с алгоритмом решения полного квадратного уравнения.

ДЕЛАЮ: делаем каждый себе установку «Понять и быть тем первым, который увидит правильный путь решения». Желаю всем удачи!

3. Актуализация знаний учащихся.

1. Фронтальная работа с классом (в это время 3 учащихся у доски работают по индивидуальным карточкам и целью контроля выполнения домашней работы (задания – аналогичны дом. заданию). Нам с вами ребята, необходимо вспомнить теоретический материал по изученной теме «Квадратные уравнения» (что же мы умеем):

- Что такое уравнение? Что такое корень уравнения? Что значит решить уравнение?

- Какие уравнения мы называем линейными? Какие уравнения мы называем квадратными? Приведите примеры

- Сколько корней может иметь линейное уравнение (квадратное) уравнение? Примеры.

- Какие виды неполных квадратных уравнений вам известны? Приведите примеры.

- Какой общий вид имеет полное квадратное уравнение? Приведите пример.

- Какие квадратные уравнения мы с Вами умеем решать? Приведите примеры

Индивидуальная карточка №1

Решите уравнения:

  1. 2x2 – 72 = 0

  2. x2 – 7x = 0

  3. 4x(2x – 8) = 0


Индивидуальная карточка №2 Решите уравнение:

  1. (2x – 4)(5x – 30) = 0

  2. - 10x2 = 0

  3. 3x2 – 18x = 0

Индивидуальная карточка №3 Решите уравнение:

  1. - 5x2 = 20

  2. 4x2 - 64 = 0

  3. (5 – x)(x – 4) = 0

Проверка работы по индивидуальным карточкам. Комментарии учащихся класса (по цепочке) решенных уравнений у доски. Оценка работы учащихся у доски

2.Фронтальная работа. А теперь давайте проверим готовность двигаться дальше в решении квадратных уравнений. (Приложение 1. слайд 3)

Среди перечисленных уравнений укажите 1 ряд – квадратные уравнения;

2 ряд – линейные уравнения; 3 ряд – неполные квадратные уравнения

5x2 – 12x + 7 = 0

x2 = 1 = 0

- 4x + 16 = 20

5x – 45 = 8x – 13

- 7x2 – 49x = 0

6x3 – 12x + 11 = 0

3x - 8 = 0

(x – 1) (x – 2) = 0

x(x – 4) = 0

5 (2x – 3) = 10

4. Первичное усвоения новых знаний

Из предыдущих уроков видно, что при решении квадратных уравнений приходилось выделять полный квадрат двучлена. Чтобы постоянно не выполнять таких преобразований, достаточно один раз выполнить эти преобразования для общего вида квадратного уравнения и получить формулу корней квадратного уравнения.

Вывести формулу корней квадратного уравнения (на доске)

Ввести понятие дискриминанта квадратного уравнения (Приложение 1, слайд 4)

Рассмотреть различные случаи решения квадратного уравнения в зависимости от значения дискриминанта (D) (Приложение 1 слайды 5-8)

Решение квадратных уравнений

ax2 + bx + с = 0, где а ≠ 0

1. Найдем дискриминант (D) уравнения по формуле b2 – 4ac

2. Определим количество корней уравнения в зависимости от значения дискриминанта D

D0, уравнение имеет 2 корня; x1 = , x2 =

D= 0 уравнение имеет 1 корень ; x =

D

3. Записать ответ

Запись в тетради алгоритма решения квадратного уравнения, формулу корней квадратного уравнения.

5. Физкультминутка (включить спокойную музыку) (Приложение 1, слайд 9, приложение 2 – музыка)

  1. Закрыть глаза, сильно напрягая глазные мышцы, на счет 1 -4, затем раскрыть глаза, расслабив мышцы глаз, посмотреть вдаль на счет 1-6. Повторить 4-5 раз.

  2. Посмотреть на переносицу и задержать взор на счет 1-4. До усталости глаза не доводить. Затем открыть глаза, посмотреть вдаль на счет 1-6. Повторить 4-5 раз.

  3. Не поворачивая головы, посмотреть направо и зафиксировать взгляд на счет 1-4, затем посмотреть вдаль прямо на счет 1-6. Аналогичным образом проводятся упражнения с фиксацией взгляда влево, вверх и вниз. Повторить 3-4 раза.

  4. Перенести взгляд быстро по диагонали: направо вверх - налево вниз, потом прямо вдаль на счет 1 -6; затем налево вверх - направо вниз и посмотреть вдаль на счет 1-6. Повторить 4-5 раз.

6. Первичная проверка понимания

Работа с готовыми решениями. Комментарии трех учащихся с места

Привести пример решения квадратноых уравнений (Приложение 1, слайды 10-12)

Приер 1.

5x2 – 4x – 1 = 0

а = 5, b = - 4, с = -1

D = b2 – 4ac = (-4)2 – 4 ∙ 5 ∙ (-1) = 16 + 20 = 36, D0уравнение имеет 2 корня

x1 = = = 1


x2 = = = - 0,2


Ответ: - 0,2; 1

Пример 2

4x2 - 12x + 9 = 0

а = 4, b = - 12, с = 9

D = b2 – 4ac = (-12)2 – 4 ∙ 4 ∙ 9 = 144 - 144 = 0, D = 0, уравнение имеет 1 корень

x = = = 1,5

Ответ: 1,5

Пример 3

7x2 + 3x + 5 = 0

а =7, b = 3, с = 5

D = b2 – 4ac = (-3)2 – 4 ∙ 7 ∙ 5 = 9 - 140 = 131, D

Ответ: нет корней

7. Первичное закрепление

Работа на уроке. Решение квадартных уравнений (работа в парах) Приложение 2 (2 варианта)

На каждую парту 1 вариант. Сверка с образцом на доске (написано перед уроком на открывающихся досках).

Работа у доски по учебнику – по 2 учащихся № 240 (а,в,д), №243(а,д)

8. Домашнее задание : п. 4.4, № 240(б,е,к), №243(б,е), №245(б,г,е)

9. Итог урокаю Рефлексия. Выставление оценок учащимся (Приложение 1, слайд

  1. Напишите формулу нахождения дискриминанта квадратного уравнения.

  2. Напишите формулу корней квадратного уравнения

  3. Сколько корней может иметь квадратное уравнение? От чего это зависит?

Рефлексия (Приложение 1, слайд

  • На уроке я успел сделать…

  • В результате я узнал и научился…

  • Я не понял, у меня не получилось…

Кому на уроке все было понятно встаньте и похлопайте в ладоши, у кого остались вопросы и не все получалось сразу сидя похлопайте в ладоши, у кого не получилось решить последнее уравнение поднимите руку.

Самоанализ урока

Урок в 11 « В» классе по теме «Решение квадратных уравнений по формуле» мною был проведен комбинированный урок изучения и первичного закрепления новых знаний по данной теме. В дальнейшем при изучении данной темы в 11 классе, а также сдачи ГИА в 9 классе пригодятся знания , полученные на этом уроке.

Все этапы урока были направлены на достижение целей и задач, поставленных в начале урока. Урок был достаточно динамичным, насыщенным. Начало урока позволило мобилизовать учащихся класса, настроить их на восприятие нового материала. Темп работы учащихся на уроке позволяет проводить урок в достаточно быстром темпе.

Содержание учебного материала полностью соответствует программе и уровню знаний учащихся по предмету. Цели и задачи урока соответствуют плану и конспекту урока и были достигнуты.

Особено интересно для обучающихся и продуктивно для меня на уроке получилась работа в парах. Учащиеся аргументировано отстаивали свое верное решение. Сами смогли найти ошибки одноклассников. И совместными усилиями получить верный ответ.

Во время урока большая нагрузка легла на плечи учащихся, учитель выступал в качестве координатора, несмотря на то, что это был урок «открытия» нового знания, что наиболее актуально, в связи с предстоящим введением в средней школе ФГОСов.

На уроке я использовала современные образовательные технологии: технология критического мышления – на всех этапах урока, проблемное обучение – на этапе мотивации учащихся была поставлена проблема поиска наиболее рационального способа решения полных квадратных уравнений, технология обучения в сотрудничестве (работа в парах) – взаимопомощь, взаимопроверка, информационно-коммуникативные технологии – использование во время урока презентации(авторская разработка) и, конечно, здоровьесберегающая технология – физкультминутка (гимнастика для глаз).

В целом урок в 8 «В» классе прошел успешно. Цели и задачи, поставленные в начале урока были достигнуты. Учащиеся ушли с урока с хорошим настроением.









Сохранить у себя:
Открытый урок по алгебре 8 класс по теме: «Решение квадратных уравнений по формуле»

Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки