Конспект занятия предпрофильного курса по теме "Решение задач по теме Вероятность"

Занятие предпрофильного курса по теме "Решение задач по теме Вероятность" проводится в игровой форме. Группа разбивается на две команды. В ходе борьбы за первенство ребятам придется решать задачи разны уровней сложности.

Содержимое разработки


Терехова Елена Анатольевна, учитель математики и экономики

МБОУ «СОШ № 3 с УИОП» г. Котовска Тамбовской области


Урок подготовки к ЕГЭ по математике в 11 классе

«Мы щелкаем задачи по теории вероятностей как орешки»


Тема: «Мы щелкаем задачи по теории вероятностей как орешки»

Предметная область: математика (алгебра и начала анализа)

Класс: 11 (общеобразовательный)

Цели урока:

  • обобщить материал по теме «Элементы комбинаторики, статистики и теории вероятностей в ЕГЭ по математике»;

  • развивать вероятностное мышление учащихся;

  • повысить положительную мотивацию к учению.

Задачи урока:

  1. образовательные:

    • обобщить и систематизировать основные понятия изучаемой темы;

    • отработать и закрепить практические навыки решения ключевых задач;

    • продолжить подготовку учащихся к ЕГЭ по математике;

  2. развивающие:

  • продолжить формирование аналитического и логического мышления учащихся;

  • продолжить формирование у учащихся навыков самостоятельной деятельности при подготовке к ЕГЭ;

  1. воспитательные:

  • воспитывать коммуникативные компетенции;

  • продолжить формирование общей и математической культуры учащихся;

  • воспитывать понимание значимости ведущей роли математики в развитии современного научно-технического общества.

Тип урока: комбинированный.

Длительность урока: 45 минут.

Форма работы учащихся: индивидуальная и групповая.

Оборудование:

  • компьютер;

  • проектор;

  • экран.

Дидактический материал: компьютерная презентация «Мы щелкаем задачи по теории вероятностей как орешки» (авторский медиапродукт, Microsoft Office Power Point 2003). (В конспекте урока представлен материал слайдов в текстовой форме).

Литература, использованная при подготовке к уроку:

  1. Мордкович А.Г. Семенов П.В. События. Вероятности, Статистическая обработка данных: Доп. параграфы к курсы алгебры 7-9 кл. общеобразоват. учреждений. – 3-е изд. – М.: Мнемозина, 2005. – 112 с.

  2. Математика. 10-11 классы: элективный курс «В мире случайных закономерностей» / ав.-сост. В.Н. Студенецкая и др. – Волгоград: Учитель, 2007. – 126 с.

  3. Задачник-практикум по теории вероятностей с элементами комбинаторики и математической статистики: Учебное пособие для студентов-заочников IV курса физико-математических факультетов педагогических институтов / Н.Я. Виленкин, В.Г. Потапов. – Москва: Просвещение, 1979. – 112 с.

  4. Демоверсии ЕГЭ по математике – 2012, 2013.

  5. http://mathege.ru/ - открытый банк заданий по математике.



План урока:

  1. Вводное слово учителя. Постановка цели урока – 1 мин.

  2. Теоретический фундамент – повторение основных понятий, формул и правил по теме «Элементы комбинаторики, статистики и теории вероятностей» - 10 мин.

  3. Практикум: решение ключевых типов задач В10 ЕГЭ по математике – 15 мин.

  4. Самостоятельная работа учащихся - решение задач по теме «Элементы комбинаторики, статистики и теории вероятностей в ЕГЭ» – 15 мин. (см. ПРИЛОЖЕНИЕ 1)

  5. Проверка результатов самостоятельной работы – 2 мин.

  6. Домашнее задание – 1 мин.

  7. Подведение итогов урока. – 1 мин.

Ход урока:

  1. Вводное слово учителя. Постановка цели урока.


Учитель: Великий французский ученый Блез Паскаль писал об этой чудесной науке так: «Сочетая строгость научных доказательств с неопределенностью случая и примиряя казалось бы противоположные вещи, и, извлекая ее [новой науки имя] из того и другого, можно по праву присвоить ей ошеломляющее название геометрия случая».

С 2012 года в контрольно-измерительные материалы ЕГЭ по математике включена задача В10 по теме «Элементы комбинаторики, статистики и теории вероятностей». Практика показала, что ряд учащихся испытывает затруднения при решении задач данной тематики, поэтому для успешного решения таких задач на экзамене нам предстоит серьезная работа. Сегодня на уроке мы вспомним и повторим материал по этой теме, решим ключевые типы задач В10, входящие в ЕГЭ.



(Просмотр презентации. Смена слайдов – по щелчку).



2) Теоретический фундамент – повторение основных понятий, формул и правил по теме «Элементы комбинаторики, статистики и теории вероятностей».

Учитель: Первым делом нам необходимо заложить теоретический фундамент, без которого невозможно успешное решение задач на «Элементы комбинаторики, статистики и теории вероятностей». Для этого давайте все вместе вспомним и повторим основные понятия, формулы и правила. (Демонстрация слайдов презентации. Учитель акцентирует внимание учащихся на теоретических аспектах темы).



Слайд 1

















Слайд 2









Слайд 3













Учитель: Иными словами: несовместные события не могут наступить в одном опыте.



Слайд 4







































Слайд 5





































Слайд 6















Учитель: Ребята, обратите особое внимание: в задании В10 ЕГЭ по математике ответ всегда записывается в виде положительной десятичной дроби, значение которой всегда меньше 1.

Слайд 7



















Слайд 8















Слайд 9















Слайд 10

















Учитель: Обратите внимание: Р(В\А)это вероятность события B при условии, что произошло событие A (аналогично для Р(А\В).

Слайд 11



















Слайд 12























Слайд 13























Слайд 8




Учитель: Рассмотрим случай повторных независимых испытаний с двумя исходами. Вероятность того, что событие А наступит ровно раз m при проведении n независимых испытаний, каждое из которых имеет два исхода, обозначается Рn(m) и вычисляется по формуле Бернулли.


Слайд 14











3)Практикум – решение ключевых типов задач В10 ЕГЭ по математике.


Учитель: Переходим от теории к практике. Рассмотрим, как теоретические знания основных понятий, законов и формул помогут нам в решении ключевых типов задач В10 ЕГЭ по математике. (Демонстрация слайдов презентации. Учитель акцентирует внимание учащихся на приемах решения ключевых задач В10 ЕГЭ по данной теме. Наименование типов задач составлено таким образом, чтобы сформировать у детей ассоциативные связи между типом задачи и алгоритмом ее решения. Учащиеся, испытывающие затруднения при решении задач по данной теме, делают краткие записи в своих рабочих тетрадях. Остальные работают устно по слайдам презентации вместе с учителем).

Слайд 15























Слайд 16

























Учитель: Метод перебора комбинаций крайне неудобен для большого количества бросков, т.к. занимает много времени. Поэтому мы можем пойти другим путем.

Слайд 17



















Учитель: В задаче с монетами нужно знать два числа: число бросков и число орлов (решек). В большинстве задач эти числа заданы непосредственно в тексте задачи. Аналогично решаются задачи для решек. Имеем:

Слайд 18























Слайд 19























Слайд 20







































Учитель: Для решения данного типа задач (как и для задач на бросание кубика) удобно использовать следующую таблицу:

Слайд 21


Числа, выпавшие

на гранях

1

2

3

4

5

6

1







2







3







4







5







6




















Учитель: Далее рассуждаем аналогично предыдущей задаче.










Слайд 22















Учитель: Практика показала, что следующий тип задач вызывает у школьников наибольшие затруднения. Однако здесь нечего бояться. Такие задачи решаются просто.


Слайд 23
























Слайд 24


















Слайд 25


























Слайд 26














  1. Самостоятельная работа учащихся - решение задач по теме «Элементы комбинаторики, статистики и теории вероятностей в ЕГЭ».

Учащиеся получают индивидуальные задания самостоятельной работы (см. ПРИЛОЖЕНИЕ 1) и выполняют их любым удобным способом на двойных листах в течение 15 минут. Учащиеся, справившиеся со своими заданиями раньше указанного времени, получают новое задание (на дополнительную оценку).


  1. Проверка результатов самостоятельной работы.

Каждый учащийся обменивается работой со своим соседом по парте. Учащиеся проверяют работу своего товарища, сверяя его ответы с верными ответами, представленными учителем на слайде.

Слайд 27

варианта

задачи

1

2

3

4

5

1

0,05

0,07

0,35

0,5

0,4

2

0,3

0,03

0,6

0,56

0,43

3

0,04

0,17

0,6

0,78

0,4

4

0,25

0,14

0,3

0,66

0,43

5

0,28

0,07

0,55

0,4

0,4

6

0,1

0,14

0,35

0,34

0,43

7

0,14

0,14

0,55

0,42

0,4

8

0,25

0,08

0,5

0,74

0,4

9

0,1

0,02

0,6

0,4

0,4

10

0,1

0,06

0,45

0,58

0,43

11

0,12

0,08

0,25

0,64

0,43

12

0,24

0,375

0,5

0,76

0,4

13

0,15

0,5

0,3

0,8

0,43

14

0,12

0,0625

0,4

0,54

0,4

15

0,2

0,125

0,45

0,52

0,43


Учитель: Ребята, а теперь оцените результаты работы по следующим критериям:


«5» - за 5 верных задач

«4» - за 4 верные задачи

«3» - за 3 верные задачи

«2» - если верно выполнено менее 3-х задач


Поставьте полученную оценку в работу своего соседа по парте, а собственную оценку - в свой дневник.


  1. Домашнее задание.

Учитель: Ребята, для закрепления успехов, достигнутых вами на уроке, а также для устранения допущенных ошибок и пробелов в ваших знаниях по данной теме, на дом вы получаете следующие задания:

Слайд 28




















  1. Подведение итогов урока.


Учитель: Молодцы! Сегодня вы все активно работали на уроке, прорешали много задач. Но не следует забывать, что для получения глубоких и прочных знаний по предмету и успешной сдачи ЕГЭ по математике каждому из вас необходима систематическая ежедневная учебная работа. Спасибо за урок!













ПРИЛОЖЕНИЕ 1


Задания для самостоятельной работы учащихся


Вариант 1

  1. На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 6 прыгунов из Голландии и 2 прыгуна из Аргентины. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что четырнадцатым будет выступать прыгун из Аргентины.

  2. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,1. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,35. Вероятность того, что кофе закончится в обоих автоматах, равна 0,2. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Павла было 4 монеты по 2 рубля и 2 монеты по 5 рублей. Он, не глядя, переложил 3 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане.


Вариант 2

  1. На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 6 прыгунов из Германии и 10 прыгунов из США. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что одиннадцатым будет выступать прыгун из Германии.

  2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 2 очка. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,35. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Ольги было 6 монет по 1 рублю и 2 монеты по 5 рублей. Она, не глядя, переложила 4 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане. Ответ округлите до сотых.


Вариант 3


  1. На чемпионате по прыжкам в воду выступают 50 спортсменов, среди них 5 прыгунов из Италии и 2 прыгуна из Парагвая. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что двадцать девятым будет выступать прыгун из Парагвая.

  2. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,35. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,2. Вероятность того, что кофе закончится в обоих автоматах, равна 0,18. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Инны было 4 монеты по 1 рублю и 2 монеты по 2 рубля. Она, не глядя, переложила 3 монеты в другой карман. Найти вероятность того, что обе монеты по 2 рубля лежат в одном кармане.


Вариант 4


  1. На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 5 прыгунов из Голландии и 7 прыгунов из Венесуэлы. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что седьмым будет выступать прыгун из Голландии.

  2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 6 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,1. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают жвачку. Вероятность того, что к концу дня в автомате закончится жвачка, равна 0,25. Вероятность того, что жвачка закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня жвачка останется в обоих автоматах.

  5. В кармане у Татьяны было 6 монет по 1 рублю и 2 монеты по 5 рублей. Она, не глядя, переложила 4 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане. Ответ округлите до сотых.


Вариант 5


  1. На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 7 прыгунов из России и 10 прыгунов из Парагвая. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что четырнадцатым будет выступать прыгун из России.

  2. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 13 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,3. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают жвачку. Вероятность того, что к концу дня в автомате закончится жвачка, равна 0,4. Вероятность того, что жвачка закончится в обоих автоматах, равна 0,2. Найдите вероятность того, что к концу дня жвачка останется в обоих автоматах.

  5. В кармане у Артура было 4 монеты по 2 рубля и 2 монеты по 5 рублей. Он, не глядя, переложил 3 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане.






Вариант 6

  1. На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 4 прыгуна из Италии и 10 прыгунов из Аргентины. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что первым будет выступать прыгун из Италии.

  2. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,25. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,1. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают жвачку. Вероятность того, что к концу дня в автомате закончится жвачка, равна 0,4. Вероятность того, что жвачка закончится в обоих автоматах, равна 0,14. Найдите вероятность того, что к концу дня жвачка останется в обоих автоматах.

  5. В кармане у Маргариты было 6 монет по 1 рублю и 2 монеты по 5 рублей. Она, не глядя, переложила 4 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане. Ответ округлите до сотых.


Вариант 7

  1. На чемпионате по прыжкам в воду выступают 50 спортсменов, среди них 7 прыгунов из Италии и 10 прыгунов из Канады. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что двадцать вторым будет выступать прыгун из Италии.

  2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,35. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,35. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Антона было 4 монеты по 2 рубля и 2 монеты по 5 рублей. Он, не глядя, переложил 3 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане.


Вариант 8

  1. На чемпионате по прыжкам в воду выступают 40 спортсменов, среди них 9 прыгунов из Великобритании и 10 прыгунов из Венесуэлы. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что двенадцатым будет выступать прыгун из Венесуэлы.

  2. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 9 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,2. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,3. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,2. Вероятность того, что кофе закончится в обоих автоматах, равна 0,14. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Ангелины было 4 монеты по 1 рублю и 2 монеты по 2 рубля. Она, не глядя, переложила 3 монеты в другой карман. Найти вероятность того, что обе монеты по 2 рубля лежат в одном кармане.


Вариант 9


  1. На чемпионате по прыжкам в воду выступают 30 спортсменов, среди них 3 прыгуна из Украины и 4 прыгуна из США. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что четвертым будет выступать прыгун из Украины.

  2. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 6 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,35. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,2. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Владимира было 4 монеты по 2 рубля и 2 монеты по 5 рублей. Он, не глядя, переложил 3 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане.


Вариант 10


  1. На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 5 прыгунов из Польши и 2 прыгуна из Венесуэлы. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что шестнадцатым будет выступать прыгун из Венесуэлы.

  2. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 14 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,1. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,35. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,18. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Полины было 6 монет по 1 рублю и 2 монеты по 5 рублей. Она, не глядя, переложила 4 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане. Ответ округлите до сотых.








Вариант 11


  1. На чемпионате по прыжкам в воду выступают 50 спортсменов, среди них 4 прыгуна из Украины и 6 прыгунов из Канады. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что тридцатым будет выступать прыгун из Канады.

  2. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 10 очков. Результат округлите до сотых.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,1. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,14. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Элины было 6 монет по 1 рублю и 2 монеты по 5 рублей. Она, не глядя, переложила 4 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане. Ответ округлите до сотых.

Вариант 12


  1. На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 6 прыгунов из Великобритании и 5 прыгунов из Бразилии. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что третьим будет выступать прыгун из Великобритании.

  2. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,3. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают жвачку. Вероятность того, что к концу дня в автомате закончится жвачка, равна 0,2. Вероятность того, что жвачка закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня жвачка останется в обоих автоматах.

  5. В кармане у Анатолия было 4 монеты по 2 рубля и 2 монеты по 5 рублей. Он, не глядя, переложил 3 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане.


Вариант 13


  1. На чемпионате по прыжкам в воду выступают 20 спортсменов, среди них 3 прыгуна из Голландии и 4 прыгуна из Колумбии. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что восьмым будет выступать прыгун из Голландии.

  2. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,1. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,2. Вероятность того, что кофе закончится в обоих автоматах, равна 0,2. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Дмитрия было 6 монет по 2 рубля и 2 монеты по 5 рублей. Он, не глядя, переложил 4 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане. Ответ округлите до сотых.


Вариант 14


  1. На чемпионате по прыжкам в воду выступают 50 спортсменов, среди них 6 прыгунов из России и 7 прыгунов из Аргентины. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что четвертым будет выступать прыгун из России.

  2. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орел не выпадет ни разу.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,25. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,14. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Ивана было 4 монеты по 2 рубля и 2 монеты по 5 рублей. Он, не глядя, переложил 3 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане.


Вариант 15


  1. На чемпионате по прыжкам в воду выступают 45 спортсменов, среди них 2 прыгуна из Испании и 9 прыгунов из Боливии. Порядок выступлений определяется жеребьевкой. Найдите вероятность того, что девятнадцатым будет выступать прыгун из Боливии.

  2. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что решка не выпадет ни разу.

  3. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,2. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

  4. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

  5. В кармане у Елены было 6 монет по 1 рублю и 2 монеты по 5 рублей. Она, не глядя, переложила 4 монеты в другой карман. Найти вероятность того, что обе монеты по 5 рублей лежат в одном кармане. Ответ округлите до сотых.


Замечание: На практике количество вариантов самостоятельной работы зависит от количества учащихся в классе.





18


Сохранить у себя:
Конспект занятия предпрофильного курса по теме "Решение задач по теме Вероятность"

Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки