Презентация по теме: "Сфера и шар".

Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной точки. Эта точка называется центром, а заданное расстояние – радиусом сферы, или шара – тела, ограниченного сферой. Шар состоит из всех точек пространства, находящихся на расстоянии не более заданного от данной точки.

Содержимое разработки

«Сфера и Шар».

«Сфера и Шар».

Окружность и круг  Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии r от данной точки. r d  r – радиус;  d – диаметр r Часть плоскости, ограниченная окружностью, называется кругом.  Опр. сферы

Окружность и круг

  • Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии r от данной точки.

r

d

  • r – радиус;
  • d – диаметр

r

  • Часть плоскости, ограниченная окружностью, называется кругом.

Опр. сферы

Определение сферы Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ( R) от данной точки ( центра т.О). Сфера – тело полученное в результате вращения полуокруж-ности вокруг её диаметра. меридиан R – радиус сферы – отрезок, соединяющий любую точку сферы с центром. R О т. О – центр сферы D – диаметр сферы – отрезок, соединяющий любые 2 точки сферы и проходящий через центр. Параллель (экватор) диаметр D = 2R шар

Определение сферы

  • Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ( R) от данной точки ( центра т.О).
  • Сфера – тело полученное в результате вращения полуокруж-ности вокруг её диаметра.

меридиан

  • R – радиус сферы – отрезок, соединяющий любую точку сферы с центром.

R

О

  • т. О – центр сферы
  • D – диаметр сферы – отрезок, соединяющий любые 2 точки сферы и проходящий через центр.

Параллель (экватор)

диаметр

  • D = 2R

шар

Шар

Шар

  • Тело, ограниченное сферой, называется шаром.
  • Центр, радиус и диаметр сферы являются также центром, радиусом и диаметром шара.
  • Шар радиуса R и центром О содержит все точки пространства, которые расположены от т. О на расстоянии, не превышающем R.
Исторические сведения о сфере и шаре Оба слова « шар » и « сфера » происходят от греческого слова «сфайра» - мяч. В древности сфера и шар были в большом почёте. Астрономические наблюдения над небесным сводом вызывали образ сферы. Пифагорейцы в своих полумистических рассуждениях утверждали, что сферические небесные тела располагаются друг от друга на расстоянии пропорциональном интервалам музыкальной гаммы. В этом усматривались элементы мировой гармонии. Отсюда пошло выражение «музыка сферы». Аристотель считал, что шарообразная форма, как наиболее совершенная, свойственна Солнцу, Земле, Луне и всем мировым телам. Так же он полагал, что Земля окружена рядом концентрических сфер. Сфера, шар всегда широко применялись в различных областях науки и техники. д/з прим.

Исторические сведения о сфере и шаре

  • Оба слова « шар » и « сфера » происходят от греческого слова «сфайра» - мяч.
  • В древности сфера и шар были в большом почёте. Астрономические наблюдения над небесным сводом вызывали образ сферы.
  • Пифагорейцы в своих полумистических рассуждениях утверждали, что сферические небесные тела располагаются друг от друга на расстоянии пропорциональном интервалам музыкальной гаммы. В этом усматривались элементы мировой гармонии. Отсюда пошло выражение «музыка сферы».
  • Аристотель считал, что шарообразная форма, как наиболее совершенная, свойственна Солнцу, Земле, Луне и всем мировым телам. Так же он полагал, что Земля окружена рядом концентрических сфер.
  • Сфера, шар всегда широко применялись в различных областях науки и техники.

д/з прим.

Как изобразить сферу? 1. Отметить центр сферы (т.О) 2. Начертить окружность с центром в т.О 3. Изобразить видимую вертикальную дугу ( меридиан) О 4. Изобразить невидимую вертикальную дугу R 5. Изобразить видимую гори-зонтальную дугу (параллель) 6. Изобразить невидимую горизонтальную дугу 7. Провести радиус сферы R  ур. окр.

Как изобразить сферу?

  • 1. Отметить центр сферы (т.О)
  • 2. Начертить окружность с центром в т.О
  • 3. Изобразить видимую вертикальную дугу ( меридиан)

О

  • 4. Изобразить невидимую вертикальную дугу

R

  • 5. Изобразить видимую гори-зонтальную дугу (параллель)
  • 6. Изобразить невидимую горизонтальную дугу
  • 7. Провести радиус сферы R

ур. окр.

Уравнение окружности  Зададим прямоугольную систему координат О xy  Построим окружность c центром в т. С и радиусом r М(х;у) у  Расстояние от произвольной т. М ( х;у)  до т.С  вычисляется по формуле: С(х 0 ;у 0 )  МС =  (x – x 0 ) 2 + (y – y 0 ) 2 МС = r , или МС 2 = r 2 О х  следовательно уравнение окружности имеет вид:  (x – x 0 ) 2 + (y – y 0 ) 2 = r 2

Уравнение окружности

  • Зададим прямоугольную систему координат О xy
  • Построим окружность c центром в т. С и радиусом r

М(х;у)

у

  • Расстояние от произвольной т. М ( х;у) до т.С вычисляется по формуле:

С(х 0 ;у 0 )

  • МС = (x – x 0 ) 2 + (y – y 0 ) 2

МС = r , или МС 2 = r 2

О

х

следовательно уравнение

окружности имеет вид:

(x – x 0 ) 2 + (y – y 0 ) 2 = r 2

Уравнение сферы  Зададим прямоугольную систему координат О xyz  Построим сферу c центром в т. С и радиусом R М(х;у ;z ) z R МС =  (x – x 0 ) 2 + (y – y 0 ) 2 + (z – z 0 ) 2  C(x 0 ;y 0 ;z 0 )  МС = R , или МС 2 = R 2 следовательно уравнение сферы имеет вид: у х (x – x 0 ) 2 + (y – y 0 ) 2 + (z – z 0 ) 2 = R 2

Уравнение сферы

  • Зададим прямоугольную систему координат О xyz
  • Построим сферу c центром в т. С и радиусом R

М(х;у ;z )

z

R

МС = (x – x 0 ) 2 + (y – y 0 ) 2 + (z – z 0 ) 2

C(x 0 ;y 0 ;z 0 )

  • МС = R , или МС 2 = R 2

следовательно уравнение

сферы имеет вид:

у

х

(x – x 0 ) 2 + (y – y 0 ) 2 + (z – z 0 ) 2 = R 2

r d = r Если d Если d = r , то прямая и окружность имеют 1 общую точку. Если d r , то прямая и окружность не имеют общих точек. Сфера и плоск" width="640"

Взаимное расположение окружности и прямой

Возможны 3 случая

r

d

d r

d = r

Если d

Если d = r , то прямая и окружность имеют 1 общую точку.

Если d r , то прямая и окружность не имеют общих точек.

Сфера и плоск

Взаимное расположение сферы и плоскости  Введем прямоугольную систему координат Oxyz z  Построим плоскость α , сов-падающую с плоскостью Оху  Изобразим сферу с центром в т.С, лежащей на положительной полуоси Oz и имеющей координаты (0;0; d) , где d - расстояние (перпендикуляр) от центра сферы до плоскости α . C (0 ;0; d) у O В зависимости от соотношения d и R возможны 3 случая… х α

Взаимное расположение сферы и плоскости

  • Введем прямоугольную систему координат Oxyz

z

  • Построим плоскость α , сов-падающую с плоскостью Оху
  • Изобразим сферу с центром в т.С, лежащей на положительной полуоси Oz и имеющей координаты (0;0; d) , где d - расстояние (перпендикуляр) от центра сферы до плоскости α .

C (0 ;0; d)

у

O

  • В зависимости от соотношения d и R возможны 3 случая…

х

α

Взаимное расположение сферы и плоскости  Рассмотрим 1 случай z  d C (0 ;0; d) r М у O r = R 2 - d 2 х Сечение шара плоскостью есть круг.   α

Взаимное расположение сферы и плоскости

  • Рассмотрим 1 случай

z

  • d

C (0 ;0; d)

r

М

у

O

r = R 2 - d 2

х

  • Сечение шара плоскостью есть круг.

α

  • С приближением секущей плоскости к центру шара радиус круга увеличивается. Плоскость, проходящая через диаметр шара, называется диаметральной . Круг, полученный в результате сечения, называется большим кругом.
Взаимное расположение сферы и плоскости  Рассмотрим 2 случай z d = R , т.е. если расстояние от центра сферы до плоскости равно радиусу сферы, то сфера и плоскость имеют одну общую точку C (0 ;0; d) у O х α

Взаимное расположение сферы и плоскости

Рассмотрим 2 случай

z

  • d = R , т.е. если расстояние от центра сферы до плоскости равно радиусу сферы, то сфера и плоскость имеют одну общую точку

C (0 ;0; d)

у

O

х

α

R , т.е. если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек. C (0 ;0; d) у O х α" width="640"

Взаимное расположение сферы и плоскости

  • Рассмотрим 3 случай

z

  • d R , т.е. если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.

C (0 ;0; d)

у

O

х

α

Площадь сферы  Сферу нельзя развернуть на плоскость.  Опишем около сферы многогран ник, так чтобы сфера касалась всех его граней.  За площадь сферы принимается предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани Площадь сферы радиуса R :  S сф =4 π R 2 т.е.:  Площадь поверхности шара равна учетверенной площади большего круга S шара =4 S круга

Площадь сферы

  • Сферу нельзя развернуть на плоскость.
  • Опишем около сферы многогран ник, так чтобы сфера касалась всех его граней.
  • За площадь сферы принимается предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани

Площадь сферы радиуса R : S сф =4 π R 2

т.е.: Площадь поверхности шара равна учетверенной площади большего круга

S шара =4 S круга

Сохранить у себя:
Презентация по теме: "Сфера и шар".

Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки