Первый признак равенства треугольников

Геометрия

Первый признак равенства треугольников

Теоретический материал для самостоятельного изучения.

Мы уже познакомились со способом сравнения треугольников путем наложения. Например, поворачивая треугольники, построенные Фалесом, на 180°, мы совмещали стороны и углы.

Но бывают ситуации, в которых этот способ неприменим. Например, если возникает необходимость сравнивать земельные участки треугольной формы.

Сегодня мы узнаем, как можно установить равенство треугольников без наложения их друг на друга.

Мы познакомились со способом определения расстояния до недоступной точки, предложенным Фалесом. Этот способ примечателен не только своей новизной по меркам древней Греции, но и тем, что Фалес впервые в истории науки понял необходимость доказательства.

Геометрия

Первый признак равенства треугольников

Теоретический материал для самостоятельного изучения.

Мы уже познакомились со способом сравнения треугольников путем наложения. Например, поворачивая треугольники, построенные Фалесом, на 180°, мы совмещали стороны и углы.

Но бывают ситуации, в которых этот способ неприменим. Например, если возникает необходимость сравнивать земельные участки треугольной формы.

Сегодня мы узнаем, как можно установить равенство треугольников без наложения их друг на друга.

Мы познакомились со способом определения расстояния до недоступной точки, предложенным Фалесом. Этот способ примечателен не только своей новизной по меркам древней Греции, но и тем, что Фалес впервые в истории науки понял необходимость доказательства.

Содержимое разработки

Геометрия

Первый признак равенства треугольников

Теоретический материал для самостоятельного изучения.

Мы уже познакомились со способом сравнения треугольников путем наложения. Например, поворачивая треугольники, построенные Фалесом, на 180°, мы совмещали стороны и углы.

Но бывают ситуации, в которых этот способ неприменим. Например, если возникает необходимость сравнивать земельные участки треугольной формы.

Сегодня мы узнаем, как можно установить равенство треугольников без наложения их друг на друга.

Мы познакомились со способом определения расстояния до недоступной точки, предложенным Фалесом. Этот способ примечателен не только своей новизной по меркам древней Греции, но и тем, что Фалес впервые в истории науки понял необходимость доказательства.

Сравнить треугольники можно используя, так называемые, признаки равенства треугольников.

Чтобы убедиться в равенстве треугольников способом наложения, необходимо проверить равенство 6 соответственных элементов: 3 сторон и 3 углов треугольников.

Оказывается, что все 6 проверять нет необходимости. Мы сегодня докажем, что достаточно проверить только 3 пары элементов.

Будем утверждать, что достаточно сравнить только 3 пары элементов – 2 стороны и угол между ними.

В математике любое утверждение, справедливость которого устанавливается путем рассуждений, называется теоремой.

А сами рассуждения называются доказательством теоремы.

Рассмотрим теорему о равенстве треугольников: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Формулировка теоремы состоит из двух частей. Первая часть начинается словом «если». В ней говорится о том, что дано. Это часть называется условием теоремы.

Вторая часть теоремы начинается словом «то». В ней говорится о том, что надо доказать. Вторая часть формулировки теоремы называется её заключением.

Дано: ∆ ABC, ∆А1В1С1, АВ = А1В1, АС = А1С1 А = А1.

Доказать: ∆АВС = ∆А1В1С1. 

Так как А =А1, то ∆АВС можно наложить на ∆А1В1Стак, что:

вершина А совместится с вершиной А1, стороны АВ и АС наложатся соответственно на лучи А1В1 и А1С1.

Так как АС = А1С1, АВ = А1В1, то стороны треугольников АС и А1С1, АВ и А1В1совместятся.

В частности, совместятся точки В и В1, С и С1Сторона ВС совпадет со стороной В1С1.

АВС полностью совместился с ∆А1В1С1.

Следовательно, ∆АВС = ∆А1В1С1.

Доказанная теорема позволит нам сделать вывод о равенстве треугольников, сравнивая 3 пары элементов – по 2 сторонам и углу между ними каждого треугольника.

Такая теорема называется признаком.

Сохранить у себя:
Первый признак равенства треугольников

Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки